Обучающий эксперимент и анализ его результатов

Аналитическое образование » Развитие мышления на уроках математики » Обучающий эксперимент и анализ его результатов

Страница 5

Мы считаем, что не следует идти по самому легкому в этом случае пути — познакомить ученика с готовым решением. Не следует и подсказывать, к какому разделу школьного курса математики относится предложенная задача, какие известные учащимся свойства и теоремы нужно применить при решении.

Решение нестандартной задачи — очень сложный процесс, для успешного осуществления которого учащийся должен уметь думать, догадываться. Необходимо также хорошее знание фактического материала, владение общими подходами к решению задач, опыт в решении нестандартных задач.

В процессе решения каждой задачи и ученику, решающему задачу, и учителю, обучающему решению задач, целесообразно четко разделять четыре ступени: 1) изучение условия задачи; 2) поиск плана решения и его составление; 3) осуществление плана, то есть оформление найденного решения; 4) изучение полученного решения — критический анализ результата решения и отбор полезной информации.

Даже при решении несложной задачи учащиеся много времени тратят на рассуждения о том, за что взяться, с чего начать. Чтобы помочь учащимся найти путь к решению задач, учитель должен уметь поставить себя на место решающего задачу, попытаться увидеть и понять источник его возможных затруднений, направить его усилия в наиболее естественное русло. Умелая помощь ученику, оставляющая ему разумную долю самостоятельной работы, позволит учащемуся развить математические способности, накопить опыт, который в дальнейшем поможет находить путь к решению новых задач.

“Лучшее, что может сделать учитель для учащегося, состоит в том, чтобы путем неназойливой помощи подсказать ему блестящую идею… Хорошие идеи имеют своим источником прошлый опыт и ранее приобретенные знания… Часто оказывается уместным начать работу с вопроса: “Известна ли вам какая-нибудь родственная задача?” (Пойа Д.). Таким образом, хорошим средством обучения решению задач, средством для нахождения плана решения являются вспомогательные задачи. Умение подбирать вспомогательные задачи свидетельствует о том, что учащийся уже владеет определенным запасом различных приемов решения задач. Если этот запас не велик (что вполне очевидно для учащихся VII—VIII классов), то учитель, видя затруднения учащегося, должен сам предложить вспомогательные задачи. Умело поставленные вспомогательные вопросы, вспомогательная задача или система вспомогательных задач помогут понять идею решения. Необходимо стремиться к тому, чтобы учащийся испытал радость от решения трудной для него задачи, полученного с помощью вспомогательных задач или наводящих вопросов, предложенных учителем.

Так, когда учащиеся затруднялись решить с помощью составления уравнения задачу “К некоторому двузначному числу слева и справа приписали по единице. В результате получили число в 23 раза большее первоначального. Найдите это двузначное число”, то в качестве вспомогательных задач мы предлагали следующие:

К числу х приписали справа цифру 4. Представьте полученное число в виде суммы, если х: а) двузначное число; б) трехзначное число.

К числу у приписали слева цифру 5. Представьте полученное число в виде суммы, если у: а) двузначное число; б) трехзначное число.

Конечно, думающий ученик задастся вопросом: как самому, без помощи учителя, находить вспомогательные задачи?

Безусловно, учащихся следует приучать самим составлять вспомогательные задачи, или упрощать условия предложенных задач так, чтобы без помощи учителя найти способы их решения.

Умение находить вспомогательные задачи, как и вообще умение решать задачи, приобретается практикой. Предлагая учащимся задачу, следует посоветовать выяснить, нельзя ли найти связь между данной задачей и какой-нибудь задачей с известным решением или с задачей, решающейся проще.

Страницы: 1 2 3 4 5 6 7 8 9 10


Статьи по теме:

Поставка школьных автобусов в сельские территории
В рамках приоритетного национального проекта "Образование" в Бельском района получено 3 школьных автобуса и один автомобиль "Газель" приобретён на условиях софинансирования. В настоящее время два автобуса находятся в МОУ Бельская СОШ и по одному в Кавельщинской и Грибановской ОО ...

Методы и приёмы работы с первоклассниками по преодолению графо-моторных нарушений
Развитие графо-моторного компенента письма – часть работы учителя начальных классов. Преодоление же графо-моторных нарушений письма у младших школьников, как компонента ОНР – работа логопеда. Этой проблеме посвящены разработки упражнений, методики и приёмы многих авторов (Рябкова Т.Ю. Мисаренко Г.Г ...

Характеристика нарушения лексико-грамматической стороны речи при ОНР
Р.И. Лалаева и Н.В. Серебрякова подробно описывают нарушения лексики у детей с ОНР, отмечая ограниченность словарного запаса, расхождение объема активного и пассивного словаря, неточное употребление слов, вербальные парафазии, несформированность семантических полей, трудности актуализации словаря. ...

Навигация

Copyright © 2024 - All Rights Reserved - www.basicpedagog.ru