А+С=Б+Б
С=М+М
Я+М=Б (1)
А+С=Я+М+Я+М
Элементы из третьего равенства переставим в первое условие, заменив каждый бочонок ягненком с мотком шпагата (2).
В равенство (2) подставим элементы второго условия, т.е. заменим два мотка шпагата собачонкой (3).
А+С = Я + М + Я+М (2) А+С = 2Я + С (3)
Итак, А =2Я, акробат весит столько же, сколько и два ягненка.
Если в задаче можно выделить самостоятельные части, то целесообразно сформулировать их отдельно и решить по очереди.
Задача 4. Заспорили три мудреца о том, кто из них самый мудрый. Наконец, они обратились к судье, славившемуся своей мудростью. «Скажи нам, справедливейший из судей, кто из нас самый мудрый?»
Задумался судья, а потом и говорит: «Вот перед вами лежат 5 тюбетеек: 3 из красного бархата, а 2 - из черного. Сейчас вам завяжут глаза и наденут тюбетейки на головы. Когда повязки с ваших глаз снимут, самый мудрый из вас скажет, какая тюбетейка у него на голове»,
Так и сделали. Сняли повязки с глаз: видит каждый перед собой красные тюбетейки на головах товарищей, а какая на своей голове — не знает. Наконец, один мудрец сказан: «О справедливейший из судей! Ты велел надеть на меня красную тюбетейку».
«Вот ты и есть самый мудрый из вас троих» - решил судья.
Как мудрец догадался, что на нем красная тюбетейка?
Решение: Так как всего было 5 тюбетеек:
3 красные и 2 черные, то возможны три различных варианта:
а) на трех мудрецов надели 2 черные и 1 красную тюбетейку;
б) на трех мудрецов надели 1 черную и 2 красные тюбетейки;
в) на трех мудрецов надели 3 красные тюбетейки.
Каждый случай можно рассмотреть отдельно.
Причем любая предыдущая подзадача помогает разобраться в последующей подзадаче.
В случае а) кто-то из мудрецов увидел бы или 2 черные тюбетейки (если на нем самом была красная), или 1 черную (если на нем была черная). А это противоречит условию, где сказано, что каждый увидел только красные тюбетейки.
В случае б) любой из собратьев обладателя черной тюбетейки увидел бы ее. А это тоже противоречит условию.
Остается случай в). К нему можно прийти без всяких дополнительных рассуждений.
Но тот, кто догадался о цвете своей тюбетейки, не знал, что каждый из спорщиков увидел только красные тюбетейки. Он мог предполагать, что на нем — черная. Но ему подсказало верный ответ молчание товарищей. Если бы кто-то из них увидел два черных головных убора, то сразу бы дал верный ответ относительно себя. Но молчание обоих свидетельствовало о том, что любой из них сомневался относительно того, какая тюбетейка у него на голове. А это могло быть только тогда, когда каждый увидел две красные тюбетейки.
Моделью некоторого объекта А называется объект В, в каком-то отношении подобный оригиналу А, но не совпадающий с ним. Все обучение математике связано с изучением различных математических моделей: число, функция, уравнение, геометрические фигуры и т.д. Однако, работая с моделями, изучая их, учащиеся не осознают свою деятельность в этом аспекте. А школьники должны научиться изучать какие-то явления с помощью моделирования. Это существенно изменит отношение школьников к учебным занятиям.
Можно обучать приемам моделирования на таких доступных школьникам примерах, как таблицы, схемы, графы и т.п. Эти примеры имеют, быть может, не столько математическое, сколько общеинтеллектуальное значение. Рассмотрим различные приемы моделирования на конкретных задачах.
1 Прием моделирования на полупрямой
Если в задаче имеется множество объектов и требуется установить взаимоотношение между элементами этого множества, то задачу можно решать на полупрямой.
Задача 5. На вечеринку собрались четверо друзей: Аня. Вика. Миша и Коля. Коля пришел раньше Ани, но не был первым. Определите, в какой последовательности друзья приходили к месту встречи, если Вика пришла последней.
Решение: Построим модель описанной ситуации, считая обычный луч «линией времени». Друзья, пришедшие на вечеринку, обозначатся точками с соответствующими буквами. Условимся пришедшего на вечеринку раньше обозначать на полупрямой (первой буквой его имени) левее, пришедшего позже — правее. По порядку каждое условие отмечаем на полупрямой.
На рисунке 1, а) показано, что Коля пришел раньше Ани. По рисунку 1, б) мы видим, что кто-то из друзей опередил Колю, а следовательно, и Аню. Появление еще одной правой точки на рисунке 1, в) передает условие «Вика была последней». Тогда придется сделать вывод, что Миша пришел раньше всех. Последовательность явки друзей к месту встречи видна на рисунке 1, г).
Статьи по теме:
Результаты экспериментальной работы по технологии планирования
воспитательной работы в школе
Результаты эффективности воспитательного процесса в классе являются одним из разделов плана классного руководителя. Необходимость включения этого раздела в план работы классного наставника объясняется тем, что при отсутствии достоверной, подвергнутой тщательному анализу информации о развитии личнос ...
Экспериментальная проверка разработанной методики обучения
Основной целью экспериментального исследования являлась: проверка гипотезы, согласно которой предложенные содержание и методы обучения по изучению темы «Базы данных» способствуют повышению уровня информационной подготовки учащихся в
области технологий хранения и поиска данных, а также положительно ...
Фасилитация в профессиональном образовании
Сегодня общество по целому ряду обстоятельств (экономических, финансовых, кадровых и т.д.) столкнулось с совершенно новой ситуацией в образовании. Возникла необходимость изменения условий, форм и механизмов учения, особенно в профессиональной сфере. С этой точки зрения становится интересным открыто ...